blog

フローティング機構とは|バリ取り自動化に向けて知っておきたいこと

バリ取り機械(バリ取りロボット)の導入を検討している方であれば、「フローティング機構」という言葉を耳にしたことがあるのではないでしょうか?

フローティング機構とは、バリ取りを自動化するにあたって作業を効率的かつ精密に行うための仕組みのひとつですが、そもそもフローティング機構とは何なのか?について、イマイチ分かっていない方も多いかと思います。

そこで本記事では、バリ取り機の導入ご検討中の方に向けて、フローティング機構とはどのようなシステムなのかを詳しく解説していきますので、ぜひ最後までご覧ください!

フローティング機構とは?

  
<スプリング式バリ取りホルダC10型(左)とエアフロート式バリ取りアタッチメントAF40型(右)でのフローティング加工例>

フローティング機構とは、バリ取り工具を一定の力で押し付けながら動かすことで、製品に沿って滑らかにバリ取りを行う機構のことを指します。

従来のバリ取り機は「リジッド(軸先固定)式機構」と呼ばれる、ティーチング(教示)を行うことでプログラミングされたライン通りに削るタイプの機械が一般的でした。

しかし近年ではスプリングや圧縮エアを用いた「フローティング機構」を採用し、バリ取り工具を一定の圧力で押し付けることができ、製品形状のバラツキや飛び出したバリの形状に沿って滑らかにバリを取り除くことができるのです。

バリ取り機に「フローティング機構」を搭載すべき理由

バリ取り機にフローティング機構を搭載する理由は、バリ取り後における製品の「品質」と「効率性」が大きく向上するからです。ここからはこれらのメリットについて、詳しく解説していきます。

:製品形状のバラツキを吸収し柔軟に削れるから、「バリ取り品質」が向上する

先にも解説しましたが、これまでの「リジッド式」というのは、プログラミングされたラインに沿って削る方法であるため、製品形状のバラツキに対して、仕上がりを均一に整えることが難しいという欠点がありました。

しかしフローティング機構は、軸先が製品やバリの凹凸に応じて傾動または伸縮するため、バリや製品形状のバラツキを吸収し、滑らかで綺麗な仕上がりになるのです。

これにより、複雑な形状・不規則なバリでも効率良くバリ取りが行うことができ、特に医療機器や自動車部品など、高い精度を要求される工業製品のバリ取りにもよく使用されています。

:切削途中の調整が減るため、「バリ取り効率」が向上する

製品に対して滑らかに切削するということは、製品寸法にバラツキがあっても、仕上がりが均一にまとまりやすく、不良品の発生率が大幅低下します。

また従来のリジッド式では、バリ取り工具を強く押し当てたいときには切削ポイントごとにティーチングし直す必要がありましたが、フローティング機構を搭載することで、これまで都度ティーチングしていたような「押し当て力の微調整」を簡単に行うことができるため、生産効率も大幅に向上するというわけです。

スプリング式の弱点を克服した、「エアフロート式」の特徴とは?

上でも触れた通り、傾動または伸縮するフローティング機構にはスプリング(バネ)による「スプリング式」と、圧縮エアによる「エアフロート式」の2種類があります。

スプリング(バネ)式はその名の通り、バネの力を用いて刃先が「X・Y・Z」方向に傾動または伸縮するフローティング機構です。こちらは傾動・伸縮はするものの、フロート力の発生源はバネですので、作業の途中でフロート力(バネ自体の圧力)の調整が必要な場合には、作業を中断して「バネ自体の交換作業」が発生するといったデメリットがありました。

またバネによるフロート力は、押し付けるほど反発して強くなるため、本来除去するべきバリが取り除けなかったり、逆に反発が強すぎて製品まで削り込んでしまったりする事例もありました。

そこで開発された「エアフロート式」は、刃先が「X・Y・Z」方向に傾動・伸縮するのはバネ式と同様ですが、フロート力は圧縮エアによりピストンを押すことで発生します。

これによりフロート力を「エア圧の調整」だけで簡単に行えるため、箇所ごとのバネ交換が不要となります。またフロート力(圧力)がバネの縮みに比例するスプリング式とは異なり、エアフロート式ではほぼ一定のフロート力(圧力)が得られ、より高い精度でバリ取りできるのです。


<当社の手がけるエアフロート式バリ取りアタッチメント『AF40型』>

FINESYSTEMのエアフロート式バリ取りアタッチメントAF型(特許第6041317号)は、押し付け圧力を自在に調整できることにより、様々な材質や一つの製品に大きさの異なるバリがある場合などでも対応可能です。段取り替えを減らせて時間短縮といった面でも大きく注目されているのです。

エアフロート式バリ取りアタッチメントAF型の導入で、
「熟練工の技」をロボットで実現!

近年、工数削減や労働環境改善などの理由から、バリ取りを自動化する動きが盛んになってきました。これまでのバリ取りは、熟練工による長年の感覚や勘、適切な判断によって行われてきたものであり、その技術を自動化で再現することが困難でした。

しかし最近では、フロート機構をはじめとした技術導入により、バリ取りをロボットによって自動化しながらも、限りなく熟練工の技に近い品質を提供できるようになりました。特にこのエアフロート機構は、人間でいうところの「手首の柔軟性」のような役割を果たしており、柔軟性のないロボットの画一的な動きを人間の手作業のようにすることができ、より速く、質の高いバリ取り作業が可能となったのです。

FINESYSTEMでは、これまでバリ取り工程において課題視されてきた、高い品質要求や工数課題、作業者不足などの課題を解決するため、「熟練工レベルのバリ取り」を実現するバリ取り自動化システムおよび、バリ取りホルダやツールの開発・製作を行って参りました。

  • バリ取り自動化を検討しているが、どこに依頼すべきか分からない
  • バリ取り精度は維持しつつ、「生産性向上・コスト削減」を叶えたい
  • 作業者の負担を減らしたい

上記のような、バリ取り機械の導入・自動化による作業改善なら、ぜひFINESYSTEMにお任せください!

>>お問い合わせはこちらから
>>バリ取り・RBハンドリングのトライのご相談はこちらから

関連記事

ツールの種類で“仕上げ精度”も変わる!「バリ取り自動化用ツール」について解説

ツールの種類で“仕上げ精度”も変わる!「バリ取り自動化用ツール」について解説

「仕上げ加工」とは バリ取りにおける「仕上げ」とは、ワークを納品物として仕上げるための最後の加工工程です。 微細なバリを取り除くのはもちろん、ワーク角をなくす「面取り加工」も仕上げ加工の一環です。 本記事では、バリ取り自動化の最終フェーズ「仕上げ加工の自動化」で使用されるツールについて詳しく解説していきます。 仕上げツールの種類 まずは仕上げで使用されるツールについてです。主に下記の2つを使用します。 超硬ロータリーバー 軸付砥石 それぞれ詳しく見ていきましょう。 1. 超硬ロータリーバー 超硬ロータリーバーは回転工具の先端に取り付けて使用する工具です。回転する刃先で被削材の表面を削ることでバリを取り除きます。 超硬ロータリーバーは回転する刃先で被削材の表面を削りながら形状を整えるもので、主にバリ取り作業や重研削、仕上げ加工などの作業に使用されます。 ロータリーバーの形状を選定することで、バリの切削をはじめ加工目的や用途、製品形状に応じて効率的な仕上げを可能にします。 ◯ 超硬ロータリーバーでの加工例 筒状ワークの内径加工 波状ワークの面取り加工 「面取り加工」についてはこちらをご覧ください。 関連記事:『面取り加工って何?「C面・R面・糸面取り」の違いまで詳しく解説!』 2. 軸付砥石 軸付砥石はロータリーバーよりも滑らかな仕上げが可能な回転式砥石です。 きめ細かなバリ取りはもちろん、面取り加工の中でも、角に丸みを帯びせる「R面取り加工」などを行う際にも利用されます。 ▲鋳鉄のパーティングライン加工の様子 仕上げ加工の注意点 ツールは消耗品 当然ですが、仕上げ加工用のツールは「消耗品」ですので、定期的な交換が必要です。 また消耗具合もワークの特徴や運用方式によっても異なりますので、交換頻度は運用してみないことには分かりません。 詳細なティーチングが必須 ▲波状ワークのティーチングポイント(31点) 仕上げ加工はワーク形状に倣う必要があるため、詳細なティーチングポイント(教示点)の設定が求められます。ティーチングポイントが多いほど高精度な仕上がりになりますが、その分サイクルタイムは落ちてしまいます。 また、きめ細かに設定しすぎると、イレギュラーな形状のバリに対応できず「削り残し」が発生してしまうため、ちょうどいい塩梅のティーチングポイント数に抑えることが重要となります。 FINESYSTEMのエアフロート式バリ取りアタッチメントは、独自のエアフロート機構で工具がワークに追従するため、極めて少ない教示点で高精度な加工を可能にしています。 【特許取得】フローティング技術で、 バリ残し・えぐりゼロの“倣い加工”を実現!   本記事でも紹介したように、バリ取りはたとえ同一ワークであっても「異なるバリサイズ」が必ずあります。 FINESYSTEM独自開発のエアフロート機構(特許取得)は、あらかじめバリサイズにあわせたフロート圧を電空レギュレータにて可変制御が可能です。レギュレータの調整による「バリ取り条件の簡易変更」を可能にしました。 さらに軸元に「複数ボールガイド」を使用することで、製品形状のバラツキにかかわらず、空振り・えぐりの発生ゼロを実現。製品形状にバラツキがあっても補正(教示修正)なしで、熟練工のような“素早く・滑らかな加工”ができるようになりました。 ▲波状ワークでティーチングポイント「4点」を実現 また当社では実際のお客様の製品・ワークを利用した「事前トライ」を承っておりますので、 実際に加工した際の品質はどうか? サイクルタイムをどのぐらい短縮できるのか? 導入時の「費用対効果」はどうか? なども踏まえて解決策をご提案いたします。まずはお気軽に事前トライにてご相談くださいませ。 >バリ取りトライのお申し込みはこちらから!

詳しく見る
リジッド機構とは?構造から特徴・課題点を詳しく解説!<!--24113公開用-->

リジッド機構とは?構造から特徴・課題点を詳しく解説!

リジッド(軸先固定)機構とは? バリ取りロボットにおける「リジッド(軸先固定)機構」とは、切削工具などがしっかりと固定されている構造のことを言います。 リジッド機構ホルダはバリ取りロボットが普及しはじめた頃に多く導入されていました。 そもそもホルダって何? バリ取りロボットにおける「ホルダ」とは、切削工具などをロボットに取り付ける際に切削工具を保持するための装置で、バリ取り作業の精度と効率を高めるために重要な役割を果たします。 外力などによって切削工具がズレてしまうと、本来削りたい部位を削れなかったり、削ってはいけない部位を削ったりしてしまいます。 そのためホルダによってバリ取り工具をしっかりと固定することで、工具を安定させ、精度の高いバリ取りを実現するのです。 関連記事:『バリ取りロボットの「ホルダ」って何?役割やホルダの種類まで詳しく解説!』 リジッド機構の強みは「外力によるズレが少ない」こと! ▲リジッド機構イメージ図 リジッド機構最大の特徴は、外力による切削ツールの位置ズレが少ないことです。 上図のようにホルダ先端の工具はしっかりと固定された構造となっているため、外力によって軸先がブレることはほとんどありません。 これにより加工中に発生する振動や衝撃にも耐えられ、高い加工精度が実現されるというわけです。 リジッド機構の課題は「空振り(削り残し)」の発生 一方でこの「ズレの少なさ」がデメリットになるケースも。それがリジッド機構の課題である「空振り(削り残し)」の発生です。 リジッド機構はアタッチメントのブレが少ない反面、バリの形状・大きさに合わせた柔軟な動きができず、空振り(削り残し)が発生しがち。 構造上、工具がしっかりホルダーに固定されていることで、ティーチング(教示)外の動きができず、イレギュラーな形状のバリが残ってしまうのです。 またロボットがティーチング通りの動きを行う以上、ティーチング点も形状に合わせてより細かく設定しなければならず、「手間が増える上に、都度修正が必要」という課題が残っています。 「完全自動化」が難しいという課題も… 上で解説した通り、高い精度が出せない=仕上げは“作業者の手作業”になるため、リジット機構ホルダの導入によりある程度の効率化はできるものの、バリ取りに人件費をかけないという「完全自動化」が難しいのも課題のひとつ。 そのため、 過去導入していたが、精度がイマイチで辞めてしまった 結局人の手を使うので、最初から作業者に任せる流れに戻した といった製造業者の方も多くいらっしゃるようです。 FINESYSTEMは、 「空振り」を解消するホルダ設計に着目!  当社が開発した独自のエアフロート機構(AFシリーズ)は、エアを用いる機構をベース構造としつつ、軸元に「複数ボールガイド(特許技術)」を使用することで、人間でいうところの「手首の柔軟性」のような役割を果たし、機械でありながらより“感覚作業”に近いバリ取りを実現しました。 これまでバリ取りロボットは、ワーク形状にあわせて綿密なティーチングを行う必要がありましたが、独自エアフロート機構では動画のように「ここから、ここまで削る。」という最低限のティーチングを行うだけで、まるで熟練工の手首のように、工具をワーク形状に倣わせることが可能に。 これにより、従来機よりもティーチングの少なさやサイクルタイムが向上するだけでなく、バリ取りロボット最大の課題だった「空振り(削り残し)ゼロ」を実現したのです。 下記ページでは、当社が設計・開発した「独自エアフロート機構」について詳しく解説していますので、ぜひご覧ください。 関連ページ:『バリ取り自動化ページ』 金属だけでなく、樹脂も対応可能! まずは「事前トライ」で課題感をお聞かせください 本記事でも紹介したように、当社ではロボットによるバリ取りの「完全自動化」を掲げて日夜研究・開発を進めてきました。 その集大成である“独自のエアフロート機構(AFシリーズ)”をぜひ導入いただきたいところではありますが、実際にお客様のワークを加工できて、その上で品質・サイクルタイムを短縮させられなければ意味がありません。 そのため当社では、実際のお客様の製品・ワークを利用した「事前トライ」を承っています。本当に納得いただいた上で導入していただきたいからこそ、既に導入を検討されているお客様であっても、まずは事前トライからの実施を推奨しています。 実際に加工した際の品質はどうか? サイクルタイムをどのぐらい削減できるのか? 導入時の「費用対効果」はどうか? なども踏まえて現状の課題感に対する解決策をご提案いたしますので、まずはお気軽に事前トライにてご相談くださいませ。 >バリ取りトライのお申し込みはこちらから!

詳しく見る
バリ取りロボットの「ホルダ」って何?役割やホルダの種類まで詳しく解説!<!--24112公開用-->

バリ取りロボットの「ホルダ」って何?役割やホルダの種類まで詳しく解説!

バリ取りホルダとは? バリ取りロボットにおけるホルダとは、ロボットに取り付ける切削工具を保持するための装置です。ホルダは、バリ取り作業の精度と効率を高めるために重要な役割を果たします。 工具の取り付けに不可欠! 上でも解説した通り、ホルダの最も大きな役割が、工具をロボットに取り付け保持すること。 外力やワークの硬さに工具が負けてしまうと、工具がズレてしまい、本来削りたい部位を削れなかったり、逆に削ってはいけない部位を削ったりしてしまいます。 そのためホルダによってバリ取り工具をしっかりと固定することで、工具を安定させ、精度の高いバリ取りを実現するのです。 バリ取りホルダの種類は? バリ取りホルダには、内部構造の違いによっていくつかの種類があります。 現在、主流となっているバリ取りホルダーは主に、 リジッド(軸先固定)機構 バネ機構 エアフロート機構 上記の3タイプです。それぞれの特徴について詳しく解説していきます。 1:リジッド(軸先固定)機構 切削工具が先端にしっかりと固定されている構造のホルダです。 リジッド機構ホルダは工具が常に一定の位置に保持されるため、ロボットでも高い加工精度を実現できる構造として、バリ取りロボットが普及しはじめた頃に多く導入されていました。 一方で、ワーク形状のバラツキや固定時の位置ズレにあわせた柔軟なバリ取りが難しく、空振りやえぐりが発生してしまうというデメリットもあります。 リジッド(軸先固定)機構については下記記事でより詳しく解説しておりますので、こちらもあわせてご覧ください。 関連記事:『リジッド機構ホルダとは?構造から特徴・課題点を詳しく解説!』 2:バネ機構 バネの力で工具の刃先を「X・Y・Z」方向に傾動または伸縮する機構のホルダです。 特にリジッド機構の課題点であった、ワーク形状に応じて柔軟な削り方ができないというデメリットを解決するために開発されました。 そのため空振りの発生は少ないものの、バネの反発による「えぐり(削りすぎ)」が起こることがあります。 それを回避するために、バリ取り箇所によって工具またはホルダ交換を行う必要があるのがデメリットです。 バネ機構については下記記事でより詳しく解説しておりますので、こちらもあわせてご覧ください。 関連記事:『バネ機構ホルダとは?構造から特徴・課題点を詳しく解説!』 3:エアフロート機構 刃先がX・Y・Z方向に傾動・伸縮するのはバネ式と同様ですが、圧縮エアによりフロート力(圧力)を発生させる機構のバリ取りアタッチメントです。 エアフロート機構であれば、フロート力は「エア圧の調整」だけで簡単に行えるため、バリ取り箇所に合わせて複数の工具を用意する必要はありません。また、フロート力がバネの縮みに比例するバネ機構とは異なり、FINESYSTEMのエアフロート式バリ取りアタッチメントではほぼ一定のフロート力が得られ、より高い精度でバリ取りができるようになったのです。 エアフロート機構については下記記事でより詳しく解説しておりますので、こちらもあわせてご覧ください。 関連記事:『フローティング機構とは|バリ取り自動化に向けて知っておきたいこと』 「熟練工の技」を再現するには、エアフロート式バリ取りアタッチメントが不可欠! これまでもバリ取り自動化ロボットは存在していたものの、機械ではなかなか手作業のバリ取り品質を再現することが難しいという課題がありました。 この課題を解決し、バリ取りをロボットによって自動化しながらも、限りなく熟練工の技に近い品質を提供できるようになりました。エアフロート式バリ取りアタッチメントは、人間でいうところの「手首の柔軟性」のような役割を果たします。柔軟性のないロボットの画一的な動きを人間の手作業のようにすることができ、より速く、質の高いバリ取り作業が可能となったのです。 バリ取り機製造を行う多くの企業が「バリ取り自動化」を謳っています。しかし、実際のところは、仕上げには作業者の手が必要となる、いわば“半自動化”がほとんど。 「完全自動化」—— 一切人の手を介さない“バリ取り自動化”の実現。 下記記事では、バリ取り自動化の歴史を振り返りながら、当社の想いと独自のバリ取りロボット開発背景を記していますので、ぜひあわせてご覧ください。 関連記事:『真の“バリ取り自動化”とは何か?「空振り・えぐりゼロ」を実現するバリ取り機の開発背景』

詳しく見る
バリ取り機の「ツール」について|自動化マシン導入の基礎知識を解説

バリ取り機の「ツール」について|自動化マシン導入の基礎知識を解説

ツールとは? バリ取り機の「ツール」とは、ロボットの先端につける切削パーツのことです。 実際にワークを削り取る部分ですので、切削を目的とした超硬カッターや、微細なバリを除去するヤスリ状のものまでタイプも様々です。 本記事では最終的な仕上げ加工用だけでなく、当社のバリ取りロボットに使用できるツールを例に詳しく紹介していきます。 ツールの種類 用途にもよりますがツールの種類はメジャーなものだけでも「10種類以上」あります。 ここからは用途別に、具体的には「湯口切断」「荒加工」「仕上げ加工」の3用途で使われる主なツールとその特徴について解説します。 1. 「切断」ツール 「切断ツール」は湯口部分の切断、つまり鋳造直後の“最も大きなバリ”を除去するためのツールで、ダイヤモンドディスクや切断砥石などの「大型工具」であることが特徴です。 また湯口切断はワークそのものをばっさりカットするわけですから、ツールそのものの切れ味に加えて、高いトルクも必要となります。 この辺りは下記記事で詳しく解説していますので、こちらもあわせてご覧ください。 関連記事:『鋳造・鋳鉄製品の「切断ツール」について|種類からワーク別の推奨製品まで紹介』 2. 「荒加工」ツール 荒加工ツールは、切断したワークをある程度整える、いわば切断と仕上げの“中間”を担うツールです。 こちらは「切る」というよりも仕上げに向けて「削り整える」のが目的ですので、エンドミルのような切削向きのツールが使用されます。 またこちらも切断と同様にある程度のトルクがないと“削り残し”が起こってしまうので注意が必要です。 詳しくは下記記事をご覧ください。 関連記事:『ダイキャスト切削も自動化!?鋳造製品の「粗加工」に必要なツールを解説』 3. 「仕上げ加工」ツール 仕上げ加工ツールは、微細なバリの撤去や面取り(R面、C面、系面取り)加工で使用されます。ツールは切削・研削向きの超硬ロータリーバーや砥石、場合によってはベルトサンダーなどが該当します。 またワークサイズにもよりますが、仕上げ加工は“ミリ単位の精度”が必要になりますから、たとえば一口にロータリーバーといっても、その形状やサイズはさまざまです。 ただワークや素材によって最適なツール形状は異なるため、これらすべてを揃える必要はありません。 仕上げ用ツールの詳しい説明や選定方法については、下記記事をご覧ください。 関連記事:『ツールの種類で“仕上げ精度”も変わる!「バリ取り自動化用ツール」について解説』 ◯ バリ取りツール早見表 湯口切断 粗加工 仕上げ加工 ダイヤモンドディスク 切断砥石 チップソー など エンドミル ドリル など 超硬ロータリーバー 砥石 など 【Point】 高トルクのホルダが必要 【Point】 高トルクのホルダが必要 【Point】 同名ツールでも型が豊富 「削り残し・えぐり」を防ぐ ホルダの柔軟性が必要 ツールは“消耗品” バリ取りツールは「消耗品」ですので、定期的な交換コストが発生します。 消耗頻度は「導入後」しかわからない バリ取りツールの消耗具合は、運用してみないことには分かりません。 というのも、バリ取り機は日中稼働し続けることがほとんどですから、たとえ同じようなワークを扱う他社事例であっても、1日、延いては1ヶ月スパンで見てみると、その生産量の差は大きなものになります。 また運用していく上で、効率的な切削方法やティーチングも見つかっていくため、一概に消耗頻度を算出できないというのが結論なのです。 だからこそ導入前には“必ず”事前トライを通して、 そもそも自社ワーク(形状・サイズ・材質)も対応可能か 目的とするバリ取り品質が得られるのか を詳しく確認しておくことが大切なのです。 バリ取り機本体の「導入コスト」については、こちらの記事で詳しく解説していますのでご覧ください。 関連記事:『バリ取り作業を自動化!バリ取り機械の導入コストや具体的なメリットまで解説!』 まずは「バリ取りトライ」をお試しください! 当社は「以前導入していたけれど、諦めてしまった…」という企業様の悩みを踏まえて、今日まで研究・開発を行ってきました。そのため、 進化したロボットは気になるけど、また同じ結果にならないか心配… 自社製品のバリ取りを自動化できるのか… といった不安を解消すべく、実際の「お客様の製品・ワーク」を利用した「事前トライ」を承っております。 実際に加工した際の品質はどうか? サイクルタイムをどのぐらい短縮できるのか?導入時の「費用対効果」はどうか? なども踏まえて解決策をご提案いたしますので、まずはお気軽に事前トライにてご相談ください。 >バリ取りトライのお申し込みはこちらから!

詳しく見る
「砂型バリ取り」を自動化|手作業の限界をロボットで超える具体的な方法・費用・事例

「砂型バリ取り」を自動化|手作業の限界をロボットで超える具体的な方法・費用・事例

金型鋳造に比べて型費が安く、短納期で試作品や小ロットの製品を製作するのに適している砂型鋳造品。 日常的によく見るもので言うとマンホールや車内部品など、世界のさまざまな工業用品として製造されています。 もちろんこの砂型鋳造品も“鋳造”なわけですから、型取り直後には「バリ」が発生します。 本記事ではそんな砂型・砂中子のバリ取りについての基礎知識から「バリ取りを実現することが可能なのか?」まで詳しく解説していきます! この記事では、こんな疑問に回答します! そもそも砂型ってどんな製品? 砂型のバリ取りが難しい理由は〇〇! 砂型製品の「バリ取り」が自動化できなかった背景 当社FINESYSTEMの解決策 砂型・砂中子とは 砂型(すながた)とは、砂を固めて作る鋳型のこと。 主に金属を溶かして流し込み、目的の形状の鋳物を作る際に使われます。砂型は低コストで製作でき、形状の自由度が高いため、複雑な形や空洞を持つ製品にも対応できます。また、木型をもとに砂を詰めて作るため、試作や単品製作、少量生産に向いています。 一方で砂型は、一度使うと壊して製品を取り出すため、同じ型を繰り返し使う大量生産には不向きです。 また砂の粒度による表面のざらつきや、冷却の遅さによる強度への影響といった短所もあります。しかし、古くから鍋や鐘などの製造に使われてきた伝統的な技術で、現代でも自動車部品やマンホール蓋など幅広く利用されています。 砂型で製造される鋳造品 1. マンホール蓋 マンホール蓋の製造に砂型鋳造が選ばれる理由は、複雑な裏面リブ構造や文字・模様などのデザインを一体成形できることにあります。 砂型は自由な形状表現が可能で、耐荷重性や耐久性が求められるため、厚みや補強リブを自在に設計できます。また、少量多品種や地域ごとのデザイン変更にも柔軟に対応できるため、砂型鋳造が最適です。 2. 自動車用エキゾーストマニホールド エキゾーストマニホールドは、エンジンから排出されるガスを集めて排気管へ導く部品です。 内部に複雑な空洞や曲がりがあり、金型では成形が難しい形状です。砂型鋳造は中子を使って内部空洞を容易に作れるため、複雑な流路を一体で製造できます。 耐熱性や耐久性も高く、試作から量産まで幅広く対応できる利点があります。 3. ポンプケーシング(ポンプ本体外殻) ポンプケーシングは、内部に流体が通る複雑な空洞を持つ大型部品です。 砂型鋳造なら、流路や接続部の複雑な形状を一体で成形でき、機械加工の手間を大幅に削減できます。 少量生産やカスタム仕様にも対応しやすく、耐圧・耐食性のある材料も選択可能なため、産業用ポンプや大型設備に多用されます。 4. 風力発電用ナセルフレーム 風力発電機のナセル(発電機やギアボックスを収容する筐体)は、大型かつ複雑な形状を持ちます。 砂型鋳造は大物鋳物の製造に適しており、設計変更や少量生産にも対応可能です。内部補強や取り付け部など、構造上の工夫も一体で成形できるため、強度とコストのバランスに優れています。 5. 油圧バルブボディ 油圧バルブボディは、内部に複雑な流路や空洞を持つ精密部品です。 砂型鋳造では中子を利用して複雑な内部構造を一体で作ることができ、機械加工の工程を減らせます。多品種少量生産やカスタム設計にも対応しやすく、耐圧性・耐摩耗性のある合金も選択できるため、産業機械や建設機械分野で広く利用されています。 砂型鋳造品も「高精度なバリ取り」が不可欠! 上の事例のように、砂型鋳造品はどれも精密さが重要視されるものばかりです。 また砂型鋳造はコストの低さや多品種少量生産への対応力、大型や複雑形状の製品にも適しているなど、多くのメリットもあります。 一方で、鋳肌が粗く寸法精度が低いという課題もあり、製品の品質を確保するためには、後工程での仕上げ作業(バリ取り)が不可欠。特に、油圧制御バルブなどの精密部品では、わずかなバリや異物が機能不良の原因となるため、徹底したバリ取りと品質管理が求められます。 しかし「鋳肌が粗く寸法精度が低い」からこそ、このバリ取りの作業そのものの“難易度が高い”というのも、砂型の特徴なのです。 砂型・砂中子のバリ取りが難しい理由 1. そもそも不均一になりやすいから 砂型鋳造による鋳物は、複雑で曲面や細かい凹凸を持つ形状が多くなります。 砂型自体が一つ一つ手作業で作られるため、同じ製品でも微妙な違いが生じやすく、バリの発生箇所や大きさも均一ではありません。 手作業でバリを取り除く際、これらの複雑な形状や不均一なバリに対して、ヤスリやナイフなどの工具を使い分けて細かく対応する必要があります。 そのため、作業者には高い技術と経験が求められ、作業時間も長くなってしまうのです。 2:粉塵が発生しやすいから(労災リスク) 砂型製品は特に、加工時の粉塵が発生しやすいため、そもそも作業者への負担が多いワーク素材でもあります。 そのため他ワークと比べてバリ取りが難しく、たとえ熟練工であっても長期的に見ると粉塵による気管支炎などの労災リスクが発生するケースも稀にあります。 3:作業者の“熟練度”が顕著に出てしまうから これは砂型に限った話ではありませんが、手作業によるバリ取りは、作業者の技術や経験に大きく依存します。 いわゆる熟練工であれば細部まできれいにバリを除去できますが、経験の浅い作業者ではバリが残ったり、逆に削りすぎて製品を傷つけてしまうことさえあります。 特に砂型鋳造品は、製品ごとにほんのわずかな違いがあるため、均一な仕上がりを保つには一人ひとりの作業精度が問われてしまうのです。 4:「労力・時間」がかかるから 砂型鋳造はもともと一品一様の製品が多く、バリ取り作業も手間と時間がかかります。 手作業で一つ一つバリを除去するには、製品をしっかり固定し、細部まで丁寧に作業する必要があるため、作業効率が低下します。大量生産の現場では、手作業によるバリ取りは生産スピードのボトルネックとなり、コスト面でも不利です。 また、長時間の作業は作業者の負担も大きくなり、安全面や健康面でも課題が生じてしまいます。 「バリ取りの自動化」が最適解とされることも 砂型加工では上のような難しさ・リスクも踏まえて、そもそもバリ取り作業を自動化するといった流れも増えつつあります。 しかしまだ自動化で進めている企業は少数であるのが現状。一体なぜなのか詳しく見ていきましょう。 自動化が進まないワケ:「熟練工の精度」が圧倒的だから 自動化が進まない理由、それはこれまでのバリ取りロボットでは熟練工が手作業で生み出す“精度”を担保できなかったからです。 製造業は「量より質」、「コスパより精度」の世界 先に紹介したような日本製のマンホールや自動車用部品は、その「精密さ」で世界を圧倒していました。これを支えているのが“熟練工の加工技術”です。 寸分の狂いもない、わずかな削り残しもないバリ取りはこれまでロボットによる大量生産では難しいとされ、 そもそも自動化を考えていない 以前試したけれど、精度が低くて辞めてしまった こういった企業様が多くいらっしゃるのが現状です。 FINE SYSTEMは独自技術で「空振り・えぐりゼロ」を実現! そこで当社が開発したのが、「熟練工レベルのバリ取り」を再現する”業界初”のエアフロート式バリ取りアタッチメントです。 そもそも熟練工がロボットに勝る理由は、“己の感覚”を作業に落としこめること。当社はバリ取りロボット最大の課題である「空振り・えぐり」をゼロにするためには、ロボットにも”感覚作業に近い動き”をさせることが重要と定義づけました。 そこで設計・開発したのが、FINESYSTEM特許技術である「独自のエアフロート機構」です。 独自エアフロート機構は、フロート力に圧縮エアを用いる機構をベース構造としつつ、軸元に「複数ボールガイド(特許技術)」を使用することで、刃先がワーク形状に素早く滑らかに追従し、機械でありながらより“感覚作業”に近いバリ取りを実現しました。 当社のエアフロートシステム開発秘話については、こちらの記事に詳しくまとめました! 関連記事:『真の“バリ取り自動化”とは何か?「空振り・えぐりゼロ」を実現するバリ取り機の開発背景』 砂型・砂中子だけでなく、金属・樹脂も対応可能!まずは「事前トライ」で課題感をお聞かせください 本記事でも紹介した通り、当社は「以前導入していたけれど、諦めてしまった…」という企業様の悩みを踏まえて、今日まで研究・開発を行ってきました。そのため、 進化したロボットは気になるけど、また同じ結果にならないか心配… 自社製品のバリ取りを自動化できるのか… といった不安を解消すべく、実際の「お客様の製品・ワーク」を利用した「事前トライ」を承っております。 実際に加工した際の品質はどうか? サイクルタイムをどのぐらい削減できるのか? 導入時の「費用対効果」はどうか? なども踏まえて解決策をご提案いたしますので、まずはお気軽に事前トライにてご相談くださいませ。 >バリ取りトライのお申し込みはこちらから!

詳しく見る

真の“バリ取り自動化”とは何か?「空振り・えぐりゼロ」を実現するバリ取り機の開発背景

FA化(工場自動化)が進む今日、製造業におけるバリ取りもロボットによって自動化する企業が増えつつあります。バリ取り機製造を行う多くの企業が「バリ取り自動化」を謳っていますが、実際のところどうでしょうか。 最終的な仕上げは「人の手」で行われている 複雑なワーク形状の場合、まだまだ手作業に頼らざるを得ない これを「“自動化”と呼んでいいのか…」。我々はこの業界課題に疑問を投げかけ、バリ取りの完全自動化に真正面から取り組むことを決意しました。 「完全自動化」—— 人の手を一切介さない“バリ取り自動化”の実現。 本記事では、バリ取り自動化の歴史を振り返りながら、当社開発の「バリ取り完全自動化」技術について詳しく解説していきます。 過去導入していたが、精度がイマイチで辞めてしまった… 導入したいが、FA化の担当者がいなくて見送っている… という方に向けて、当社の想いと開発背景を記していますので、ぜひ最後までご覧ください。 そもそもなぜ“完全自動化”は実現できなかったのか? 近年、熟練工が培った技術やノウハウの伝承が追い付かず、「熟練工が徐々に退職し始めている…」、「後継者が思うように育たない…」という課題解決に向けて、ロボットでバリ取りを自動化するといったニーズが高まっています。 一方でロボットは、ティーチング(教示)された動作しかできないため、イレギュラーな形状のバリに対して臨機応変にバリ取りすることができません。 そのためロボット導入がさかんになってきているものの「ある程度ロボットで素早く削って、残りは作業者が仕上げる」という、謂わば“半自動化”が製造業界の当たり前となってしまい、熟練工の技をロボットで再現するのはそもそも不可能と認識されてきたことが、完全自動化が実現していない大きな要因です。 このバリ取りロボットの“精度の低さ”により、冒頭でもお話した「過去導入していたが、精度がイマイチで諦めてしまった…」という企業様が多くいらっしゃるのが現状です。 FINESYSTEMは、この日本のモノづくりに対する「諦め」をなくすべく、バリ取りの“完全自動化”に向けて、研究・開発を始めました。 “完全自動化”の実現に向け、 熟練工の技を再現する「ホルダ構造」に着目 バリ取りを完全自動化するためには熟練工の技、つまり「手首の動き」を再現する必要があります。先の通り、ロボット最大の欠点は、ティーチングだけではイレギュラーなバリに対応できないこと。 ここで当社が目をつけたのが、熟練工の技を再現する独自の「ホルダ構造(機構)」の開発です。 従来ホルダの構造とデメリット まずはバリ取りロボットにおけるホルダとは何か?を紹介していくとともに、従来のバリ取りホルダにどんな問題点があったのかを解説していきます。 リジッド機構:「空振り」が発生してしまう ▲リジッド機構イメージ 初期のバリ取りロボットは、工具を軸先に固定する「リジッド機構」が主流でした。 リジッド機構は工具のブレが少ない反面、バリの形状・大きさに合わせた柔軟な動きができず、空振り(削り残し)が発生していました。 そのため「ロボットを導入したけど、手作業の方が精度が高い…」「結局残ったバリは、手作業での仕上げが必要…」といったケースが多くあり、ロボットで作業すべてを自動化する、というのが難しいホルダ機構といえます。 バネ機構:「えぐり」の発生が問題に… ▲バネ機構イメージ その後、より”人の手に近い動き”を再現するために「スプリング(バネ)の力」を応用したホルダが開発されました。バネ機構はバネの伸縮により工具をワークに倣わせることで、ある程度ティーチングから外れた動きが可能となり、人の手のような柔軟性を実現しました。 一方で傾動・伸縮はするものの、フロート(圧力)の発生源はバネですので、作業の途中でフロート力(バネ自体の圧力)の調整が必要な場合には、作業を中断して「バネ自体の交換作業」が発生するといったデメリットがありました。 またバネによるフロート力は、押し付けるほど反発して強くなるため、反発が強すぎて製品までえぐってしまう事例も目立つようになっていました。 これらの「空振り・えぐり」は必ず出てしまうもの。であれば、ここの仕上げは作業者に任せよう、という考え方が当たり前になり、バリ取り自動化は名ばかりの「半自動化」という業界認識が広まってしまったのです。 FINESYSTEMの答えは、 空振り・えぐりゼロの「熟練工レベルのバリ取り加工技術」の開発 そもそも熟練工がロボットに勝る理由は、“己の感覚”を作業に落としこめること。当社はバリ取りロボット最大の課題である「空振り・えぐり」をゼロにするためには、ロボットにも”感覚作業に近い動き”をさせることが重要と定義づけました。 そこで設計・開発したのが、FINESYSTEM特許技術である「独自のエアフロート機構」です。 独自エアフロート機構搭載、『AFシリーズ』の特徴  独自エアフロート機構は、フロート力に圧縮エアを用いる機構をベース構造としつつ、軸元に「複数ボールガイド(特許技術)」を使用することで、刃先がワーク形状に素早く滑らかに追従し、機械でありながらより“感覚作業”に近いバリ取りを実現しました。 これまでバリ取りロボットは、ワーク形状にあわせて綿密なティーチングを行う必要がありましたが、独自エアフロート機構では動画のように「ここから、ここまで削る。」という最低限のティーチングを行うだけで、まるで熟練工の手首のように、工具をワーク形状に倣わせることが可能に。 これにより、従来機よりもティーチング点数を減らしサイクルタイムが向上するだけでなく、バリ取りロボット最大の課題だった「空振り・えぐり」ゼロを実現したのです。 その他の作業も「完全自動化」を実現! バリ取り作業はもちろん、ロボットを利用する上で欠かせない、 フロート圧の変更 工具(ツール)交換 これらの作業も、電空レギュレータやATC(工具自動交換システム)を用いることですべて自動化。これにより“ロボットそのものの操作”さえも人の手を一切介入させない、本当の意味での「バリ取り完全自動化」を実現させました。 当社バリ取りロボットの特徴をより詳しく知りたい方は、下記ページもご覧ください。 関連ページ:『バリ取り自動化』 金属だけでなく、樹脂も対応可能! まずは「事前トライ」で課題感をお聞かせください 本記事でも紹介した通り、当社は「以前導入していたけれど、諦めてしまった…」という企業様の悩みを踏まえて、今日まで研究・開発を行ってきました。 そのため、 進化したロボットは気になるけど、また同じ結果にならないか心配… 自社製品のバリ取りを自動化できるのか… といった不安を解消すべく、実際の「お客様の製品・ワーク」を利用した「事前トライ」を承っております。 実際に加工した際の品質はどうか? サイクルタイムをどのぐらい削減できるのか? 導入時の「費用対効果」はどうか? なども踏まえて解決策をご提案いたしますので、まずはお気軽に事前トライにてご相談くださいませ。 >バリ取りトライのお申し込みはこちらから!

詳しく見る